GCE BIOLOGY - BY4

MARK SCHEME - SUMMER 2014

C	uestion Marking details		Marks Available
1	(a)	{Ammonium/ammonia} ions/ NH ₄ ⁺ ;	1
	(b)	Azotobacter;	1
	(c)	Root nodules;	1
	(d)	 (<i>Rhizobium</i> synthesises) {nitrogen containing compounds/or eg} {which pass to plant/ which plant can use}/ allows legumes to grow in low fertility soil; NOT fixes nitrogen (Plant synthesises) {carbohydrates/organic acids} which pass to the <i>Rhizobium</i>/ {Plant/ leghaemoglobin} provides anaerobic conditions for the bacteria; NOT Plant provides protection for the bacteria/ nutrients passing to bacteria 	2
	(e)	<u>{Small/additional}</u> rings of DNA (which occur in addition to the chromosomal DNA);	1

Question 1 total [6]

Question			Marking details	Marks Available	
2	(a)	(i)	Obligate	{microorganisms/bacteria} that	1
			aerobe	{grow/divide/ metabolise} in the	
				presence of <u>oxygen;</u>	
			Obligate	{microorganisms/bacteria} that will	1
		(ii)	anaerobe	only {grow/divide/metabolise} in the	
				absence of <u>oxygen;</u>	
			Facultative	{microorganism/bacteria} that can	1
		(iii)	anaerobe	{grow/divide/ metabolise} with or	
				without <u>oxygen;</u>	
			L		1

(b) Gram +ve PURPLE Gram –ve RED/PINK
(both colours correct for one mark);
Gram positive retain the {(crystal) violet/ purple} stain because of their {thick/peptidoglycan/murein} cell wall;
Gram negative do not retain the stain because of their {thinner cell wall/ less peptidoglycan/ less murein/lipopolysaccharide layer};
Gram positive retain crystal violet because they have a thicker cell wall than the gram negative = 2 marks

(c)	Both for o	Both for one mark		
	Cocci	sphere/ spherical		
	Bacilli	Rod; Accept cylinder		

Question 2 Total [7]

3

	Marks Available	
3 (a) (i) Both X and Y correct for one mark X White matter 1 for 1 Y Grey matter;	both	
Explanation: Grey matter contains the (darkly staining) cell bodies/nuclei of neurones whilst the white matter is mainly 1 {axons/myelin};		
(ii) L Dorsal Root ganglion; 2Z Central canal;		
(b) (i) Schwann cell; 2 Myelin/ phospholipid; NOT lipid		
 (ii) Insulates the axon; Max Allows saltatory conduction/ impulse jumps from node to node; So speeding up the transmission of the action potential/ increase speed of conduction; 	ζ2	
 (iii) Impulses cannot jump node to node/ saltatory conduction is stopped/ local circuits {too short/insufficient}/ {Few/no} voltage gated Na+ channels (between Nodes of Ranvier); So action potential cannot be generated/ speed of conduction is reduced/ action potential does not reach destination; 		
 (iv) Remyelinate the axon/use of stem cells/make the membrane add Na⁺ channels in bare areas/prevent further demyelination/ immune {suppressants/ inhibitory} drugs; Accept physiotherapy 		
(c) (i) Nerve net drawn 1		
 (ii) Respond to a limited number of stimuli; Max Cannot detect source of stimulus/ impulses pass in all directions; Number of effectors is small; No CNS; Accept no brain Action potential can be carried in more than one direction along a neurone; Only one type of cell/ upmyelinated/ facilitation - gualified/ slower 	<2	
Only one type of cell/ unmyelinated/ facilitation - qualified/ slower response; Question 3 Total [14	1]	

Question		n	Mark	ing details	Marks Available
4 (a) (i)		(i)	A Collecting du	xt;	3
			B Proximal Con	voluted Tubule;	
			C Distal Convol	uted Tubule;	
		(ii)	Label to Glomerulus capillar	/centre of Bowman's capsule;	2
			Label to PCT;		
	(b)		Both for one mark		1
			X Renal artery		
			Y Renal vein;		
	(c)		Water leaves descending lin	b {osmotically/by osmosis}/ Na⁺ is	Max 4
			retained in descending limb;		
			At apex Na ⁺ is very concent	ated/ the ascending limb receives	
			a filtrate rich in Na ⁺ /OWTTE		
			Na ⁺ {actively transported/put	nped out} of the ascending limb;	
			Lowering the water potential	in the medulla;	
			Ascending limb {does not all	ow the escape of water/	
			impermeable to water};		
			Counter current system = ne	utral	
	(d)		{High osmotic pressure /low	water potential/ low solute	Max 4
			potential/ high solute concer	tration} of <u>blood</u> detected by	
			{osmoreceptors/hypothala	mus};	
			(Secretion of) ADH by pituita	ry;	
			Reject: anterior pituitary		
			Causes collecting duct (walls	s) to {become more permeable to	
			water/insertion of aquaporing	\$};	
			Water moves into the medul	a by osmosis;	
			(Quickly) removed by the {V	asa Recta/capillaries/ blood};	
			Low volumes of concentrate	<u>d</u> urine produced;	

Question 4 Total [14]

Question	Marking details	
5 (a) (i)	1 mark for bothYCyclic photophosphorylationZNon cyclic photophosphorylation	1
(ii) (iii) (iv) (v) (vi)	(High energy) electrons/electron {carriers/acceptors}; NADP \rightarrow NADPH(₂)/ reduced NADP; Oxygen/ O ₂ / $\frac{1}{2}$ O ₂ ; Carbon dioxide/ CO ₂ ; Glucose;	1 1 1 1 1

(b)

Area	Letter	Name of region
Where the light dependent stage occurs	C;	Grana/Thylakoid;
Where the light independent stage occurs	D;	Stroma;

One mark for each box

(c)	Synthesis of amino acids/proteins using {a nitrogen source/	Max 3
	named nitrogen source};	
	Synthesis of phospholipids with phosphate;	
	Synthesis of chlorophyll with magnesium;	
	Synthesis of {nucleotides/named nucleotide} with a nitrogen	
	source and phosphate source;	

Question 5 Total [13]

4

PMT	•
-----	---

Question		'n	Marking details		Marks Available
6	(a)	(i)	All three correct for	or one mark	1
			Citrate	6	
			α-ketoglutarate	5	
			Succinate	4	
		(ii)	4C oxaloacetate plu	us 2 C acetyl;	2
			1C lost/ CO ₂ lost {b	efore α-ketoglutarate/ from isocitrate}/	
			isocitrate is decarbo	oxylated	
			and 1C lost/ CO2 lo	st {from α -ketoglutarate/ before succinate} /	
			α-ketoglutarate dec	arboxylated;	
	(b)		Reduced NAD and	reduced FAD pass electrons to the Electron	Max 4
			Transport Chain;		
			The <u>high energy</u> ele	ectrons/ electrons provide energy;	
			(Used to power) pro	oton pumps;	
			On the inner mitoch	nondrial membrane/cristae;	
			Which pump H ⁺ into	o the inter-membrane space;	
			Reduced NAD pow	ers all 3 pumps/ Reduced FAD passes to	
			2 nd pump/ OWTTE;		
			ATP synthesis = ne	putral	
	(c)		Dehydrogenase;		2
			decarboxylase;		
	(d)		(Skeletal) muscle;		2
			High numbers of m	itochondria and easy to access/ OWTTE;	

PMT

Question	Marking details	Marks Available
(e)	Low with pyruvate	2
	{The pathway leading to Acetyl Co A/link reaction} is not	
	working/ {Enzymes/dehydrogenase/decarboxylase} are not	
	active/ There is no reduced NAD for the Electron Transport	
	Chain (so no O ₂ needed);	
	High with α-ketoglutarate	
	The pathway between α -ketoglutarate and the rest of the cycle	
	is working correctly/ There is enough reduced {NAD/FAD} to	
	drive the ETC (which needs O ₂);	
(f)	Enzymes catalysing the conversion of the molecule to the next	1
	in the cycle are not functional/ The {molecule/named example}	
	cannot be converted to the {next intermediate/ named	
	example} / build up of reduced NAD and FAD;	
(g)	The {Krebs cycle/ link reaction/ Electron Transport Chain} is	Max 2
	not working (as well);	
	Pyruvate levels {build up/ increase/ higher};	
	(Excess) {pyruvate/NADH ₂ } is converted to Lactate;	

Question 6 Total [16]

Question

Marks Available

7 (a) Any 10 from:

A 3 for 1 mark

The main photosynthetic pigments found in plants are chlorophyll **a**, chlorophyll **b**, carotene and xanthophyll;

- B The function of these pigments is to **absorb** {light <u>energy/</u><u>photons;</u>
- C Correct reference to pigments in photosystems/ antenna complexes;
- D Correct reference to pigment positions within the thylakoid membrane/grana;
- E Of a chloroplast;
- F Chlorophyll a molecules in the reaction centre;
- G {Reaction centre/ chlorophyll} emitting high energy electrons;
- H Ref to range of pigments absorbing more {light energy/ photons}/ over a greater range of wavelengths
- I Used to synthesise ATP {to drive/for} the {Calvin cycle/light independent stage};
- J Some mention of {spotting plant pigments/ crushing leaf} onto a TLC/chromatography paper;
- K Addition of solvent (extraction of pigment or for separation);
- L Pigments are carried different distances;
- M According to their {solubility (in solvent)/ size};
- N Correct reference to {relative solubility/ different spot positions} {i.e. carotene more soluble than chlorophyll a and b/ carotene carried further};
- Identify using Rf values/comparison with known separation of pigments;

Question 7a Total [10]

PMT

Question

7

Marking details

Marks Available

(b) Correc

Correct term and **explanation** of events in each of A, B, C and D:

- A lag phase enzyme synthesis/ rehydration/ inability to find mates/ time for sexual maturity NOT getting used to environment;
- B log/ exponential phase rate of reproduction exceeds death rate/ {no environmental pressure/ OWTTE};
- C stationary phase environmental pressure/ limiting factors/ rate of reproduction = death rate;
- D death phase death rate exceeds rate of reproduction/ lack of resources/ build up of toxins;
- E Graph drawn the correct shape with BOTH axes labeled with Population size/ eq and time (if use units must be appropriate);
- F Correctly **explained** carrying capacity (NOT just a labeled line on the graph) as the max numbers of a pop that can be sustained by the environment;
- G Correct explanation of inter-specific competition (2 different species competing for a given resource) and e.g.;
- H Correct explanation of intra-specific competition (same species competing for a given resource) and e.g.;
- I Explanation of how density dependent factor affects population growth (increase numbers in population increases competition for resources);
- J One suitable e.g. of dependent factor affecting pop growth;
- K Explanation of how density independent factors affects population (Independent of population size);
- L One suitable e.g. of density independent factor affecting popⁿ;
- M Immigration and emigration definition;
- N Description of predator prey relationship; Accept labelled diagram
- O Births and immigration = deaths and emigration {at stationary phase / in a stable population};

Question 7b Total [10]